Affiliation:
1. Steklov Mathematical Institute RAS, Gubkin str. 8, Moscow 111991, Russia
Abstract
We study Hamiltonian flows in a real separable Hilbert space endowed with a symplectic structure. Measures on the Hilbert space that are invariant with respect to the group of symplectomorphisms preserving two-dimensional symplectic subspaces are investigated. This construction gives the opportunity to present a random Hamiltonian flow in phase space by means of a random unitary group in the space of functions that are quadratically integrable by invariant measure. The properties of mean values of random shift operators are studied.
Funder
the Russian Science Foundation
Publisher
World Scientific Pub Co Pte Ltd
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献