Affiliation:
1. Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract
Group field theories are higher-rank generalizations of matrix/tensor models, and encode the simplicial geometries of quantum gravity. In this paper, we study the thermofield double states in group field theories. The starting point is the equilibrium Gibbs states in group field theory recently found by Kotecha and Oriti, based on which we construct the thermofield double state as a “thermal” vacuum respecting the Kubo–Martin–Schwinger condition. We work with the Weyl [Formula: see text]-algebra of group fields, and a particular type of thermofield double states with single type of symmetry is obtained from the squeezed states on this Weyl algebra. The thermofield double states, when viewed as states on the group field theory Fock vacuum, are condensate states at finite flow parameter [Formula: see text]. We suggest that the equilibrium flow parameters [Formula: see text] of this type of thermofield double states in the group field theory condensate pictures of black hole horizon and quantum cosmology are related to the inverse temperatures in gravitational thermodynamics.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics