ISOSPIN–SPIN INTERCHANGE SYMMETRY AND TWO-BARYON BOUND STATES IN (3+1)-DIMENSIONAL LATTICE QCD WITH TWO-FLAVORS AND STRONG COUPLING

Author:

FARIA DA VEIGA PAULO A.1,O'CARROLL MICHAEL1,FRANCISCO NETO ANTÔNIO2

Affiliation:

1. Departamento de Matemática Aplicada e Estatística, ICMC/USP-São Carlos, C.P. 668, 13560-970 São Carlos SP, Brazil

2. Departamento de Engenharia de Produção, Administração e Economia, Escola de Minas, Campus Morro do Cruzeiro, UFOP, 35400-000 Ouro Preto MG, Brazil

Abstract

We determine two-baryon bound states in a 3+1 lattice QCD model with improved Wilson action and two flavors. We work in the strong coupling regime: small hopping parameter κ > 0 and much smaller plaquette coupling β > 0. In this regime, it is known that the low-lying energy–momentum spectrum is comprised of baryons and mesons with asymptotic masses -3 ln κ and -2 ln κ, respectively. We show that the dominant baryon–baryon interaction is an order κ2 space-range-one [Formula: see text]-exchange potential. We also show that this interaction has an important and novel isospin–spin interchange symmetry relating the various possible bound states, and then governing the two-baryon spectral structure. Letting S(I) denote the total spin (total isospin) of the two-baryon bound states, S, I = 0, 1, 2, 3, we find bound states with asymptotic binding energy κ2/4, for I+S = 1, 3, and 4 (here, with I = S = 2); κ2/12, for I+S = 0, 2, 4 and 3 (here, with I = 1, 2). In particular, we show that the two-baryon spectrum contains deuteron (I = 0), diproton (I = 1) and dineutron (I = 1)-like bound states. Using the isospin–spin symmetry, we can circumvent the lack of spin symmetry of the lattice action and show they all have the same asymptotic binding energy, namely κ2/4. Our analysis uses convenient two and four-baryon correlations, their spectral representations and a lattice Bethe–Salpeter equation, which is solved in a ladder approximation. For the isospin, spin part of the interaction, we obtain a permanent representation which describes the interaction of the individual spins and isospins of the quarks of one baryon with those of the other baryon.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3