ACCURACY OF APPROXIMATE EIGENSTATES

Author:

LUCHA WOLFGANG1,SCHÖBERL FRANZ F.2

Affiliation:

1. Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Nikolsdorfergasse 18, A-1050 Wien, Austria

2. Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

Abstract

Besides perturbation theory, which requires the knowledge of the exact unperturbed solution, variational techniques represent the main tool for any investigation of the eigenvalue problem of some semibounded operator H in quantum theory. For a reasonable choice of the employed trial subspace of the domain of H, the lowest eigenvalues of H can be located with acceptable precision whereas the trial-subspace vectors corresponding to these eigenvalues approximate, in general, the exact eigenstates of H with much less accuracy. Accordingly, various measures for the accuracy of approximate eigenstates derived by variational techniques are scrutinized. In particular, the matrix elements of the commutator of the operator H and (suitably chosen) different operators with respect to degenerate approximate eigenstates of H obtained by the variational methods are proposed as new criteria for the accuracy of variational eigenstates. These considerations are applied to that Hamiltonian the eigenvalue problem of which defines the spinless Salpeter equation. This bound-state wave equation may be regarded as the most straightforward relativistic generalization of the usual nonrelativistic Schrödinger formalism, and is frequently used to describe, e.g. spin-averaged mass spectra of bound states of quarks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a (1+1)-D Woods–Saxon Barrier Potential;Communications in Theoretical Physics;2017-06

2. Analytical solution of two-body spinless Salpeter equation for Hellmann potential;Indian Journal of Physics;2017-03-14

3. The spinless relativistic Yukawa problem;International Journal of Modern Physics A;2014-12-20

4. The spinless relativistic Hulthén problem;International Journal of Modern Physics A;2014-11-20

5. The spinless relativistic Woods–Saxon problem;International Journal of Modern Physics A;2014-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3