Elements of the Metric–Affine gravity I: Aspects of F(R) theories reductions and the topologically massive gravity

Author:

Dominguez Yessica1,Gaitan Rolando2ORCID

Affiliation:

1. ICTP-EAIFR University of Rwanda, KK 737 Street, Gikondo, Kigali PO BOX 4285 Kigali, Rwanda

2. Physics Department, Theoretical and Applied Physics Research Group, Universidad de Carabobo, A. P. Valencia 2001, Edo. Carabobo, Venezuela

Abstract

Some classical aspects of Metric–Affine Gravity are reviewed in the context of the [Formula: see text] type models (polynomials of degree [Formula: see text] in the Riemann tensor) and the topologically massive gravity. At the nonperturbative level, we explore the consistency of the field equations when the [Formula: see text] models are reduced to a Riemann–Christoffel (RCh) space–time, either via a Riemann–Cartan (RC) space or via an Einstein–Weyl (EW) space. It is well known for the case [Formula: see text] that any path or reduction “classes” via RC or EW leads to the same field equations with the exception of the [Formula: see text] theories for [Formula: see text]. We verify that this discrepancy can be solved by imposing nonmetricity and torsion constraints. In particular, we explore the case [Formula: see text] for the interest in expected physical solutions as those of conformally flat class. On the other hand, the symmetries of the topologically massive gravity are reviewed, as the physical content in RC and EW scenarios. The appearance of a nonlinearly modified selfdual model in RC and existence of many nonunitary degrees of freedom in EW with the suggestion of a modified model for a massive gravity which cure the unphysical propagations shall be discussed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3