FOURTH GENERATION MAJORANA NEUTRINO, DARK MATTER AND HIGGS PHYSICS

Author:

BAO SHOU-SHAN1,GONG XUE1,SI ZONG-GUO12,ZHOU YU-FENG3

Affiliation:

1. School of Physics, Shandong University, Jinan, 250100, P. R. China

2. Center for High-Energy Physics, Peking University, Beijing 100871, P. R. China

3. State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China

Abstract

We consider extensions of the standard model with fourth generation fermions (SM4) in which extra symmetries are introduced such that the transitions between the fourth generation fermions and the ones in the first three generations are forbidden. In these models, the stringent lower bounds on the masses of fourth generation quarks from direct searches can be relaxed, and the lightest fourth neutrino is allowed to be stable and light enough to trigger the Higgs boson invisible decay. In addition, the fourth Majorana neutrino can be a subdominant but highly detectable dark matter component. We perform a global analysis of the current Large Hadron Collider (LHC) data on the Higgs production and decay in this type of SM4. The results show that the mass of the lightest fourth Majorana neutrino is confined in the range ~41–59 GeV. Within the allowed parameter space, the predicted effective cross-section for spin-independent DM–nucleon scattering is ~3×10-48–6×10-46 cm 2, which is close to the current XENON100 upper limit and is within the reach of the XENON1T experiment in the near future. The predicted spin-dependent cross sections can also reach ~8×10-40 cm 2.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3