ELECTROMAGNETIC KLEIN–GORDON AND DIRAC EQUATIONS IN SCALE RELATIVITY

Author:

CÉLÉRIER MARIE-NOËLLE1,NOTTALE LAURENT1

Affiliation:

1. Laboratoire Univers et Théories (LUTH), Observatoire de Paris, CNRS, Université Denis Diderot, 5 place Jules Janssen, Meudon 92190, France

Abstract

We present a new step in the foundation of quantum field theory with the tools of scale relativity. Previously, quantum motion equations (Schrödinger, Klein–Gordon, Dirac, Pauli) have been derived as geodesic equations written with a quantum-covariant derivative operator. Then, the nature of gauge transformations, of gauge fields and of conserved charges have been given a geometric meaning in terms of a scale-covariant derivative tool. Finally, the electromagnetic Klein–Gordon equation has been recovered with a covariant derivative constructed by combining the quantum-covariant velocity operator and the scale-covariant derivative. We show here that if one tries to derive the electromagnetic Dirac equation from the Klein–Gordon one as for the free particle motion, i.e. as a square root of the time part of the Klein–Gordon operator, one obtains an additional term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli equation. However, if one first applies the quantum covariance, then implements the scale covariance through the scale-covariant derivative, one obtains the electromagnetic Dirac equation in its usual form. This method can also be applied successfully to the derivation of the electromagnetic Klein–Gordon equation. This suggests it rests on more profound roots of the theory, since it encompasses naturally the spin–charge coupling.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The turbulent jet in the scale-relativity framework;Physics of Fluids;2024-04-01

2. Exact solution of Klein–Gordon equation in fractional-dimensional space;International Journal of Modern Physics A;2021-11-30

3. Resolution-scale relativistic formulation of non-differentiable mechanics;The European Physical Journal Plus;2019-09

4. Scale Relativistic signature in the Brownian motion of micro-spheres in optical traps;International Journal of Modern Physics A;2017-09-20

5. Higher Spin Quaternion Waves in the Klein-Gordon Theory;International Journal of Theoretical Physics;2012-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3