Affiliation:
1. Dipartimento di Fisica dell'Università, 73100 Lecce, Italy
2. Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Italy
Abstract
A systematic analysis of a continuous version of a binomial lattice, containing a real parameter γ and covering the Toda field equation as γ→∞, is carried out in the framework of group theory. The symmetry algebra of the equation is derived. Reductions by one-dimensional and two-dimensional subalgebras of the symmetry algebra and their corresponding subgroups, yield notable field equations in lower dimensions whose solutions allow us to find exact solutions to the original equation. Some reduced equations turn out to be related to potentials of physical interest, such as the Fermi–Pasta–Ulam and the Killingbeck potentials, and others. An instantonlike approximate solution is also obtained which reproduces the Eguchi–Hanson instanton configuration for γ→∞. Furthermore, the equation under consideration is extended to n+1 dimensions. A spherically symmetric form of this equation, studied by means of the symmetry approach, provides conformally invariant classes of field equations comprising remarkable special cases. One of these (n=4) enables us to establish a connection with the Euclidean Yang–Mills equations, another appears in the context of Differential Geometry in relation to the so-called Yamabe problem. All the properties of the reduced equations are shared by the spherically symmetric generalized field equation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献