Affiliation:
1. Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
Abstract
This paper is devoted to the study of the stability of thin-shell wormholes from Kerr black hole. We employ Israel thin-shell formalism to evaluate surface stresses and study the behavior of energy conditions. The linearized stability of rotating thin-shell wormholes is analyzed by taking two different candidates of dark energy as exotic matter at thin-shell. It is found that generalized phantom model ([Formula: see text] which reduces to phantom equation of state as [Formula: see text] and [Formula: see text], where [Formula: see text] is wormhole throat radius and [Formula: see text] is the proper time) yields more stable wormhole solutions as compared to the barotropic equation of state ([Formula: see text], [Formula: see text] is the equation of state parameter and [Formula: see text] is the surface density) for particular ranges of equilibrium throat radius and the whole range of [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献