Can neutron disappearance/reappearance experiments definitively rule out the existence of hidden braneworlds endowed with a copy of the Standard Model?

Author:

Stasser Coraline1,Sarrazin Michaël12

Affiliation:

1. Laboratory of Analysis by Nuclear Reactions, Department of Physics, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

2. Institut UTINAM, CNRS/INSU, UMR 6213, Université Bourgogne–Franche-Comté, 16 route de Gray, F-25030 Besançon Cedex, France

Abstract

Many works, aiming to explain the origin of dark matter or dark energy, consider the existence of hidden (brane)worlds parallel to our own visible world — our usual Universe — in a multidimensional bulk. Hidden braneworlds allow for hidden copies of the Standard Model. For instance, atoms hidden in a hidden brane could exist as dark matter candidates. As a way to constrain such hypotheses, the possibility for neutron–hidden neutron swapping can be tested thanks to disappearance-reappearance experiments also known as passing-through-walls neutron experiments. The neutron-hidden neutron coupling [Formula: see text] can be constrained from those experiments. While [Formula: see text] could be arbitrarily small, previous works involving a [Formula: see text] bulk, with DGP branes, show that [Formula: see text] then possesses a value which is reachable experimentally. It is of crucial interest to know if a reachable value for [Formula: see text] is universal or not and to estimate its magnitude. Indeed, it would allow, in a near future, to reject definitively — or not — the existence of hidden braneworlds from experiments. In the present paper, we explore this issue by calculating [Formula: see text] for DGP branes, for [Formula: see text], [Formula: see text] and [Formula: see text] bulks. As a major result, no disappearance-reappearance experiment would definitively universally rules out the existence of hidden worlds endowed with their own copy of Standard Model particles, except for specific scenarios with conditions reachable in future experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3