Design of the barrel and endcap DIRC detectors for particle identification in PANDA

Author:

Köseoglu I.12

Affiliation:

1. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

2. II. Physikalisches Institut, Justus Liebig University of Giessen, Giessen, Germany

Abstract

The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt/Germany aims to investigate fundamental questions of hadron physics. PANDA is designed as a fixed-target experiment for an antiproton beam with a momentum range of 1.5 GeV/[Formula: see text] to 15 GeV/[Formula: see text]. In order to obtain an excellent particle identification of pions and kaons, two independent DIRC detectors have been developed for two adjacent spatial regions. The Barrel DIRC covers polar angles from [Formula: see text]–[Formula: see text] and performs [Formula: see text] separation with [Formula: see text] or more for momenta from 0.5 to 3.5 GeV/[Formula: see text]. The novel Endcap Disc DIRC (EDD) detector will cover the forward polar angles between [Formula: see text] and [Formula: see text] and will provide a [Formula: see text] separation from 0.5 GeV/[Formula: see text] up to 4 GeV/[Formula: see text] with a separation power at least [Formula: see text]. The design of the Barrel DIRC is based on the successful BaBar DIRC and the SuperB FDIRC R&D with several improvements to optimize the performance for PANDA. Both PANDA DIRC detectors use synthetic fused silica as material for radiators and light guides and lifetime-enhance Microchannel Plate PMTs (MCP-PMTs) as sensors. The Barrel DIRC uses narrow bars as a radiator, a prism-shaped expansion volume and a complex multi-layer spherical lens as focusing system. The Cherenkov radiator for the EDD is a large, 2 cm thick fused silica plate that is divided into four identical quadrants. A combination of bars and cylindrical elements with aluminum coating focus the Cherenkov light on the MCP-PMTs with segmented anode plates. The technical design of the two DIRC detectors and the performance of prototypes, tested in a mixed hadron beam at CERN, will be discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3