Affiliation:
1. Observatoire de Paris, LERMA, 61, avenue de l'Observatoire 75014 Paris, France
Abstract
We provide a conceptual unified description of the quantum properties of black holes (BH), elementary particles, de Sitter (dS) and Anti-de Sitter (AdS) string states.The conducting line of argument is the classical–quantum (de Broglie, Compton) duality here extended to the quantum gravity (string) regime (wave–particle–string duality). The semiclassical (QFT) and quantum (string) gravity regimes are respectively characterized and related: sizes, masses, accelerations and temperatures. The Hawking temperature, elementary particle and string temperatures are shown to be the same concept in different energy regimes and turn out the precise classical–quantum duals of each other; similarly, this result holds for the BH decay rate, heavy particle and string decay rates; BH evaporation ends as quantum string decay into pure (nonmixed) radiation. Microscopic density of states and entropies in the two (semiclassical and quantum) gravity regimes are derived and related, an unifying formula for BH, dS and AdS states is provided in the two regimes. A string phase transition towards the dS string temperature (which is shown to be the precise quantum dual of the semiclassical (Hawking–Gibbons) dS temperature) is found and characterized; such phase transition does not occurs in AdS alone. High string masses (temperatures) show a further (square root temperature behavior) sector in AdS. From the string mass spectrum and string density of states in curved backgrounds, quantum properties of the backgrounds themselves are extracted and the quantum mass spectrum of BH, dS and AdS radii obtained.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献