First result of orbit verification of Taiji-1 hall micro thruster

Author:

Xu Shu-Yan12,Xu Lu-Xiang13,Cong Lin-Xiao3,Li Yong-Gui3,Qiao Cong-Feng3,

Affiliation:

1. Center for Space Propulsion and Gravitational Universe (SPaGU), School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

2. Plasma Sources and Application Centre and Space Propulsion Center, NIE, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore

3. Taiji Laboratory for Gravitational Wave Universe (Beijing/Hangzhou), University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

Abstract

The Hall Micro Thrusters (HMTs) use cold gas or accelerated plasma dual mode to provide ultra-precise spacecraft altitude control. They were operated in space for the first time as part of the demonstration payloads on Chinese Academy of Science’s (CASs) Taiji-1 spacecraft since September 2019. Hall Micro Thruster Assemblies (HMTAs) were the actuators in drag-free control, and will compensate the nonconservative force for gravity wave observatories. The HMTAs meet the requirements of operating at 5–100 [Formula: see text] N of thrust with 0.7 [Formula: see text] N resolution and [Formula: see text]0.6 [Formula: see text] N/Hz[Formula: see text] (0.01–1 Hz) noise to deliver the nanometer-level precision control as fast as 30 ms measured by Gravitational Reference Sensor (GRS). A transfer function model in z-domain was fit and used to filter HMTs cathode voltage to predict GRSs thrust noise response. Simulations of a single or dual-frequency disturbance and the corresponding compensation demonstrated that HMTAs could deliver the required thrust profile expected. The capability to meet the requirements of thruster noise in drag-free control is critical for future missions because the acceleration noise on test mass directly relates to the gravity wave signa l. Preliminary in-orbit verification of Taiji-1 has showed HMTAs’ great potential in future, and the data in the experiments are presented in this paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3