Implications of diphoton searches for a radion in the bulk-Higgs scenario

Author:

Cox Peter1,Medina Anibal D.2,Ray Tirtha Sankar3,Spray Andrew4

Affiliation:

1. ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010, Australia

2. Institut de Physiqué Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France

3. Department of Physics and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India

4. Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, 34051, Korea

Abstract

In this work, we point out that the apparent diphoton excess initially presented by the ATLAS and CMS collaborations could have originated from a radion in the bulk Higgs scenario within a warped extra dimension. In this scenario, the couplings of the radion to massive gauge bosons are suppressed, allowing it to evade existing searches. In the presence of mixing with the Higgs, due to the strong constraints from diboson searches, only points near what we denominate the alignment region were able to explain the diphoton signal and evade other experimental constraints. In light of the new measurements presented at ICHEP 2016 by both LHC collaborations, which do not confirm the initial diphoton excess, we study the current and future collider constraints on a radion within the bulk-Higgs scenario. We find that searches in the diphoton channel provide the most powerful probe of this scenario and already exclude large regions of parameter space, particularly for smaller warp factors. The radion has a sizeable branching ratio into top pairs and this channel may also give competitive constraints in the future. Finally, di-Higgs searches can provide a complementary probe in the case of nonzero radion-Higgs mixing but strong alignment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3