WHY THERE IS SOMETHING SO CLOSE TO NOTHING: TOWARDS A FUNDAMENTAL THEORY OF THE COSMOLOGICAL CONSTANT

Author:

JEJJALA VISHNU1,MINIC DJORDJE2

Affiliation:

1. Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK

2. Institute for Particle Physics and Astrophysics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical dark energy and infinite statistics;International Journal of Modern Physics A;2022-05-20

2. Implementation of the Quantum Equivalence Principle;Progress and Visions in Quantum Theory in View of Gravity;2020

3. ON NONEQUILIBRIUM PHYSICS AND STRING THEORY;International Journal of Modern Physics A;2013-03-14

4. Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity;Entropy;2012-11-02

5. Modeling Time’s Arrow;Entropy;2012-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3