Framework for Automatic Selection of Kernels based on Convolutional Neural Networks and CkMeans Clustering Algorithm

Author:

Hamouda Maissa1,Ettabaa Karim Saheb2,Bouhlel Med Salim3

Affiliation:

1. Department of Computer Sciences, SETIT Laboratory, ISITCom, University of Sousse, Tunisia

2. Department of Computer Sciences, IMT Atlantic Laboratory, ISITCom, University of Sousse, Tunisia

3. Department of Computer Sciences, SETIT Laboratory, ENIS, University of Sfax, Tunisia

Abstract

Convolutional neural networks (CNN) can learn deep feature representation for hyperspectral imagery (HSI) interpretation and attain excellent accuracy of classification if we have many training samples. Due to its superiority in feature representation, several works focus on it, among which a reliable classification approach based on CNN, used filters generated from cluster framework, like k Means algorithm, yielded good results. However, the kernels number to be manually assigned. To solve this problem, a HSI classification framework based on CNN, where the convolutional filters to be adaptatively learned from the data, by grouping without knowing the cluster number, has recently proposed. This framework, based on the two algorithms CNN and kMeans, showed high accuracy results. So, in the same context, we propose an architecture based on the depth convolution al neural networks principle, where kernels are adaptatively learned, using CkMeans network, to generate filters without knowing the number of clusters, for hyperspectral classification. With adaptive kernels, the proposed framework automatic kernels selection by CkMeans algorithm (AKSCCk) achieves a better classification accuracy compared to the previous frameworks. The experimental results show the effectiveness and feasibility of AKSCCk approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3