AdaBoosted Extra Trees Classifier for Object-Based Multispectral Image Classification of Urban Fringe Area

Author:

Patel Alpesh M.12,Suthar Anil3

Affiliation:

1. Department of Electronics and Communication, Vishwakarma Government Engineering College, Chandkheda, India

2. Affiliated to Gujarat Technological University, Ahmedabad Gujarat 382424, India

3. L.J. Institute of Engineering and Technology, Ahmedabad Gujarat, India

Abstract

In the past decade, it is proven that satellite image classification using an object-based technique is better than the standard pixel-based technique. With the increasing need for classifying multispectral satellite images for urban planning, the accuracy of the classification becomes a significant performance parameter. Object-based classification (OBC) is a technique in which group of pixels having similar spectral properties, called objects, are generated using image segmentation and then these objects are classified based on their attributes. In this paper, the combination of a multiclass AdaBoost algorithm with extra trees classifier (ETC) is proposed with higher prediction accuracy for the OBC of the urban fringe area. The performance of the AdaBoost algorithm is found to be better in terms of classification accuracy than benchmarked SVM and RF classifiers for OBC. These classification methods were applied to IRS-R2 LISS IV data. The AdaBoosted extra trees classifier (ABETC) has demonstrated the highest accuracy with overall accuracy (OA) of 88.47% and a kappa coefficient of 0.85. The computational time of the ABETC is found to be much smaller than the RF algorithm. In detail, the sensitivity of the classifiers was investigated using stratified random sampling with various sample sizes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3