Compressed Sensing in Parallel MRI: A Review

Author:

Islam Rafiqul1,Islam Md Shafiqul1,Uddin Muhammad Shahin2

Affiliation:

1. Department of Computer Science and Engineering, Dhaka University of Engineering & Technology, Gazipur, Bangladesh

2. Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

Abstract

Magnetic resonance imaging (MRI) is a dynamic and safe imaging technique in medical imaging. Recently, parallel MRI (pMRI) is widely used for accelerating conventional MRI. Both frequency and image domain-based reconstructions are the most attractive methods for generating the image from multi-channel k-space data. Compressed sensing (CS) is a recently used procedure to reduce the acquisition time of conventional MRI. This reduction is achieved by taking fewer measurements from the fully sampled k-space data. Therefore, applying the CS technique in pMRI is the most emerging way for further improving the acquisition time that is a tremendous research interest. However, as the phase encoding plane may be perpendicular or parallel to the coil elements plane, finding the exact domain for CS in pMRI reconstruction is a major challenging issue. In this work, the application of the CS technique in pMRI in both domains is investigated. Later some widely used methodologies are presented as the nonlinear reconstruction algorithm of CS in pMRI. Finally, a discussion is performed based on CS in pMRI to perceive the reality of different reconstruction algorithms at a glance for finding preferred methodologies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3