SEMANTIC VIDEO TRANSCODING USING CLASSES OF RELEVANCE

Author:

CUCCHIARA RITA1,GRANA COSTANTINO1,PRATI ANDREA1

Affiliation:

1. Dipartimento di Ingegneria dell'Informazione, University of Modena and Reggio Emilia, Via Vignolese, 905, Modena, 41100, Italy

Abstract

In this work we present a framework for on-the-fly video transcoding that exploits computer vision-based techniques to adapt the Web access to the user requirements. The proposed transcoding approach aims at coping with both user bandwidth and resources capabilities, and with user interests in the video's content. We propose an object-based semantic transcoding that, according to the user-defined classes of relevance, applies different transcoding techniques to the objects segmented in a scene. Object extraction is provided by on-the-fly video processing, without manual annotation. Multiple transcoding policies are reviewed and a performance evaluation metric based on the Weighted Mean Square Error (and corresponding PSNR), that takes into account the perceptual user requirements by means of classes of relevance, is defined. Results are analyzed by varying transcoding techniques, bandwidth requirements and video types (with indoor and outdoor scenes), showing that the use of semantics can dramatically improve the bandwidth to distortion ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perceptual-based quality assessment for audio–visual services: A survey;Signal Processing: Image Communication;2010-08

2. SVC adaptation: Standard tools and supporting methods;Signal Processing: Image Communication;2009-03

3. Image retrieval;ACM Computing Surveys;2008-04

4. A multi-camera vision system for fall detection and alarm generation;Expert Systems;2007-11

5. An Integrated Framework for Semantic Annotation and Adaptation;Multimedia Tools and Applications;2005-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3