Machine Learning with Data Science-Enabled Lung Cancer Diagnosis and Classification Using Computed Tomography Images

Author:

Kiran S. Vishwa1,Kaur Inderjeet2,Thangaraj K.3,Saveetha V.4,Kingsy Grace R.5,Arulkumar N.6

Affiliation:

1. Department of AI & ML, BMS Institute of Technology and Management, Bangalore 560064, Karnataka, India

2. Department of CSE, Ajay Kumar Garg Engineering College, Ghaziabad 201009, Uttar Pradesh, India

3. Department of IT, Sona College of Technology, Salem 636005, Tamil Nadu, India

4. Department of IT, Dr. N. G. P Institute of Technology, Coimbatore 641048, Tamil Nadu, India

5. Department of CSE, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India

6. Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India

Abstract

In recent times, the healthcare industry has been generating a significant amount of data in distinct formats, such as electronic health records (EHR), clinical trials, genetic data, payments, scientific articles, wearables, and care management databases. Data science is useful for analysis (pattern recognition, hypothesis testing, risk valuation) and prediction. The major, primary usage of data science in the healthcare domain is in medical imaging. At the same time, lung cancer diagnosis has become a hot research topic, as automated disease detection poses numerous benefits. Although numerous approaches have existed in the literature for lung cancer diagnosis, the design of a novel model to automatically identify lung cancer is a challenging task. In this view, this paper designs an automated machine learning (ML) with data science-enabled lung cancer diagnosis and classification (MLDS-LCDC) using computed tomography (CT) images. The presented model initially employs Gaussian filtering (GF)-based pre-processing technique on the CT images collected from the lung cancer database. Besides, they are fed into the normalized cuts (Ncuts) technique where the nodule in the pre-processed image can be determined. Moreover, the oriented FAST and rotated BRIEF (ORB) technique is applied as a feature extractor. At last, sunflower optimization-based wavelet neural network (SFO-WNN) model is employed for the classification of lung cancer. In order to examine the diagnostic outcome of the MLDS-LCDC model, a set of experiments were carried out and the results are investigated in terms of different aspects. The resultant values demonstrated the effectiveness of the MLDS-LCDC model over the other state-of-the-art methods with the maximum sensitivity of 97.01%, specificity of 98.64%, and accuracy of 98.11%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3