VIDEO CLASSIFICATION USING OBJECT TRACKING

Author:

DIMITROVA NEVENKA1,AGNIHOTRI LALITHA1,WEI GANG2

Affiliation:

1. Philips Research, 345 Scarborough Road, Briarcliff Manor, NY 10510, USA

2. Computer Science Department, Wayne State University, Detroit, MI 48202, USA

Abstract

Content description becomes important in the ubiquity of video content on the Web and consumer devices. Video classification is needed so that more appropriate description and search methods can be applied. This paper describes two methods for video content classification: a Nearest Neighbor (NN) method relying on domain knowledge and Hidden Markov Model (HMM) based method. Our approach stems from the observation that in different TV categories, there are different objects (e.g., face and text) trajectory patterns. Face and text tracking is applied to video segments to extract face and text trajectories. We used NN and HMM to classify a given video segment into predefined classes, e.g., commercial, news, situation comedy and soap. Our preliminary experimental results show classification accuracy of 75% for NN and over 80% for HMM based method on short video segments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Community of Multimedia Agents;Mining Multimedia and Complex Data;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3