EQUIVALENT CONTINUUM MODELING OF GRAPHENE SHEETS

Author:

REDDY C. D.12,RAJENDRAN S.1,LIEW K. M.12

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

2. Nanyang Centre for Supercomputing and Visualization, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Abstract

Carbon nanotubes have drawn tremendous interest due to their excellent mechanical and electronic properties. Carbon nanotubes have a similar molecular structure as that of graphene sheets. Hence, characterization of mechanical properties of graphene sheet based on equivalent continuum modelling is of considerable importance. Our initial studies are carried out on a single carbon ring/cell. The ring is then modelled as a truss (finite) element assemblage and equivalent Young's modulus is computed for a few fundamental modes. Next, these studies have been extended to model graphene sheet as a planar continuum to determine the mechanical properties (Young's modulus, shear modulus and Poisson's ratio) for typical modes of deformation. Further research is in progress to investigate how this set of different values can be integrated together towards a meaningful continuum characterization of the inherent discrete structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3