AMYLOID: A NATURAL NANOMATERIAL

Author:

MAJI SAMIR K.1

Affiliation:

1. Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India

Abstract

Amyloids are stable, β-sheet-rich protein/peptides aggregates with 2–15 nm diameter and few micrometers long. It is originally associated with many human diseases such as Alzheimer's, Parkinson's and prion diseases. Amyloids are resistant to enzyme degradation, temperature changes and wide ranges of pH. Although, amyloids are hard and their stiffness is comparable to steel, a constant recycling of monomer occur inside the amyloid fibrils. It grows in a nucleation dependent polymerization manner by recruiting native soluble protein and by converting them to amyloid. These extraordinary physical properties make amyloids attractive for nanotechnological applications. Some amyloid fibrils have also evolved to perform native biological functions (functional amyloid) of the host organism. Functional amyloids are present in mammals such as amyloids of pMel17 and pituitary hormones, where they help in skin pigmentation and hormone storage, respectively. Here, the progress of utilizing amyloid fibrils for nanobiotechnological applications with particular emphasis on the recent studies that amyloid could be utilized for the formulation of peptide/protein drugs depot and how secretory cells uses amyloid for hormone storage will be reviewed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3