TORSION-FREENESS FOR RINGS WITH ZERO-DIVISORS

Author:

DAUNS JOHN1,FUCHS LASZLO1

Affiliation:

1. Department of Mathematics, Tulane University, New Orleans, Louisiana, 70118, USA

Abstract

A right R-module MR over any ring R with 1 is called torsion-free if it satisfies the equality [Formula: see text] for every r∈R. An equivalent definition was used by Hattori [11]. We establish various properties of this concept, and investigate rings (called torsion-free rings) all of whose right ideals are torsion-free. In a torsion-free ring, the right annihilators of elements are always idempotent flat right ideals. The right p.p. rings are characterized as torsion-free rings in which the right annihilators of elements are finitely generated. An example shows that torsion-freeness ness is not a Morita invariant. Several ring and module properties are proved, showing that, in several respects, torsion-freeness ness behaves like flatness. We exhibit examples to point out that the concept of torsion-freeness ness discussed here is different from other notions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rings whose RD-flat modules have restricted subflat domains;Rendiconti del Circolo Matematico di Palermo Series 2;2023-07-17

2. On subflat domains of RD-flat modules;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2023-02-28

3. Injective and coherent endomorphism rings relative to some matrices;Open Mathematics;2023-01-01

4. A closer look at primal and pseudo-irreducible ideals with applications to rings of functions;Communications in Algebra;2022-11-24

5. RD-projective module whose subprojectivity domain is minimal;Hacettepe Journal of Mathematics and Statistics;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3