Σ-semi-compact rings and modules

Author:

Behboodi Mahmood12,Couchot Francois3,Shojaee Seyed Hossein4

Affiliation:

1. Department of Mathematical Sciences, Isfahan University of Technology, P. O. Box 84156-83111, Isfahan, Iran

2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

3. Université de Caen Basse-Normandie, CNRS UMR 6139 LMNO, F-14032 Caen, France

4. Department of Mathematics, Mazandaran University of Science and Technology, P. O. Box 48158-78413, Behshahr, Iran

Abstract

In this paper, several characterizations of semi-compact modules are given. Among other results, we study rings whose semi-compact modules are injective. We introduce the property Σ-semi-compact for modules and we characterize the modules satisfying this property. In particular, we show that a ring R is left Σ-semi-compact if and only if R satisfies the ascending (respectively, descending) chain condition on the left (respectively, right) annulets. Moreover, we prove that every flat left R-module is semi-compact if and only if R is left Σ-semi-compact. We also show that a ring R is left Noetherian if and only if every pure projective left R-module is semi-compact. Finally, we consider rings whose flat modules are finitely (singly) projective. For any commutative arithmetical ring R with quotient ring Q, we prove that every flat R-module is semi-compact if and only if every flat R-module is finitely (singly) projective if and only if Q is pure semisimple. A similar result is obtained for reduced commutative rings R with the space Min R compact. We also prove that every (ℵ0, 1)-flat left R-module is singly projective if R is left Σ-semi-compact, and the converse holds if R is an (ℵ0, 1)-flat left R-module.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. $${\mathcal {F}}$$-Copartial Morphisms;Bulletin of the Malaysian Mathematical Sciences Society;2022-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3