Reducibility index and sum-reducibility index

Author:

An Tran Nguyen1,Dung Tran Duc2,Kumashiro Shinya3ORCID,Nhan Le Thanh2

Affiliation:

1. College of Education, Thai Nguyen University, Vietnam

2. College of Science, Thai Nguyen University, Vietnam

3. National Institute of Technology (KOSEN), Oyama College 771 Nakakuki, Oyama, Tochigi, 323-0806, Japan

Abstract

Let [Formula: see text] be a commutative Noetherian ring. For a finitely generated [Formula: see text]-module [Formula: see text], Northcott introduced the reducibility index of [Formula: see text], which is the number of submodules appearing in an irredundant irreducible decomposition of the submodule [Formula: see text] in [Formula: see text]. On the other hand, for an Artinian [Formula: see text]-module [Formula: see text], Macdonald proved that the number of sum-irreducible submodules appearing in an irredundant sum-irreducible representation of [Formula: see text] does not depend on the choice of the representation. This number is called the sum-reducibility index of [Formula: see text]. In the former part of this paper, we compute the reducibility index of [Formula: see text], where [Formula: see text] is a flat homomorphism of Noetherian rings. Especially, the localization, the polynomial extension, and the completion of [Formula: see text] are studied. For the latter part of this paper, we clarify the relation among the reducibility index of [Formula: see text], that of the completion of [Formula: see text], and the sum-reducibility index of the Matlis dual of [Formula: see text].

Funder

National Foundation for Science and Technology Development

Japan Society for the Promotion of Science

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Irreducible multiplicity and Ulrich modules;Rocky Mountain Journal of Mathematics;2022-10-01

2. On the uniform bound of reducibility index of parameter ideals of idealizations;Journal of Algebra and Its Applications;2022-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3