s.Baer and s.Rickart Modules

Author:

Birkenmeier Gary F.1,LeBlanc Richard L.2

Affiliation:

1. Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

2. Department of Mathematics, Saint Mary's Hall, San Antonia, TX 78217, USA

Abstract

In this paper, we study module theoretic definitions of the Baer and related ring concepts. We say a module is s.Baer if the right annihilator of a nonempty subset of the module is generated by an idempotent in the ring. We show that s.Baer modules satisfy a number of closure properties. Under certain conditions, a torsion theory is established for the s.Baer modules, and we provide examples of s.Baer torsion modules and modules with a nonzero s.Baer radical. The other principal interest of this paper is to provide explicit connections between s.Baer modules and projective modules. Among other results, we show that every s.Baer module is an essential extension of a projective module. Additionally, we prove, with limited and natural assumptions, that in a generalized triangular matrix ring every s.Baer submodule of the ring is projective. As an application, we show that every prime ring with a minimal right ideal has the strong summand intersection property. Numerous examples are provided to illustrate, motivate, and delimit the theory.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primitive and prime rings with s.Baer or related modules;Journal of Algebra and Its Applications;2022-11-30

2. Quasi-s.Baer and related modules;Journal of Algebra and Its Applications;2020-12-28

3. A partial order on subsets of Baer bimodules with applications to C∗-modules;Journal of Algebra and Its Applications;2020-08-05

4. π-endo Baer modules;Communications in Algebra;2019-10-22

5. Annihilators and extensions of idempotent-generated ideals;Communications in Algebra;2019-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3