A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems

Author:

Baeth N. R.1,Geroldinger A.2,Grynkiewicz D. J.3,Smertnig D.2

Affiliation:

1. Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, USA

2. Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstrasse 36, 8010 Graz, Austria

3. Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Abstract

Let R be a ring and let [Formula: see text] be a small class of right R-modules which is closed under finite direct sums, direct summands, and isomorphisms. Let [Formula: see text] denote a set of representatives of isomorphism classes in [Formula: see text] and, for any module M in [Formula: see text], let [M] denote the unique element in [Formula: see text] isomorphic to M. Then [Formula: see text] is a reduced commutative semigroup with operation defined by [M] + [N] = [M ⊕ N], and this semigroup carries all information about direct-sum decompositions of modules in [Formula: see text]. This semigroup-theoretical point of view has been prevalent in the theory of direct-sum decompositions since it was shown that if End R(M) is semilocal for all [Formula: see text], then [Formula: see text] is a Krull monoid. Suppose that the monoid [Formula: see text] is Krull with a finitely generated class group (for example, when [Formula: see text] is the class of finitely generated torsion-free modules and R is a one-dimensional reduced Noetherian local ring). In this case, we study the arithmetic of [Formula: see text] using new methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam, Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid [Formula: see text] for certain classes of modules over Prüfer rings and hereditary Noetherian prime rings.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factorization in monoids by stratification of atoms and the Elliott problem;Quaestiones Mathematicae;2022-06-24

2. The Characterization of Finite Elasticities;Lecture Notes in Mathematics;2022

3. Elementary Atoms, Positive Bases and Reay Systems;The Characterization of Finite Elasticities;2022

4. Preliminaries and General Notation;The Characterization of Finite Elasticities;2022

5. Introduction;The Characterization of Finite Elasticities;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3