The Ohm–Rush content function II. Noetherian rings, valuation domains, and base change

Author:

Epstein Neil1,Shapiro Jay1

Affiliation:

1. Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

Abstract

The notion of an Ohm–Rush algebra, and its associated content map, has connections with prime characteristic algebra, polynomial extensions, and the Ananyan–Hochster proof of Stillman’s conjecture. As further restrictions are placed (creating the increasingly more specialized notions of weak content, semicontent, content, and Gaussian algebras), the construction becomes more powerful. Here we settle the question in the affirmative over a Noetherian ring from [N. Epstein and J. Shapiro, The Ohm-Rush content function, J. Algebra Appl. 15(1) (2016) 1650009, 14 pp.] of whether a faithfully flat weak content algebra is semicontent (and over an Artinian ring of whether such an algebra is content), though both questions remain open in general. We show that in content algebra maps over Prüfer domains, heights are preserved and a dimension formula is satisfied. We show that an inclusion of nontrivial valuation domains is a content algebra if and only if the induced map on value groups is an isomorphism, and that such a map induces a homeomorphism on prime spectra. Examples are given throughout, including results that show the subtle role played by properties of transcendental field extensions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vanishing of Tors of absolute integral closures in equicharacteristic zero;Transactions of the American Mathematical Society, Series B;2024-01-08

2. THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS;J KOREAN MATH SOC;2021

3. The McCoy property in Ohm–Rush algebras;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2021-03-10

4. Extensions of primes, flatness, and intersection flatness;Commutative Algebra;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3