Idempotent lifting and ring extensions

Author:

Diesl Alexander J.1,Dittmer Samuel J.2,Nielsen Pace P.3

Affiliation:

1. Department of Mathematics, Wellesley College, Wellesley, MA 02481, USA

2. Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA

3. Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

Abstract

We answer multiple open questions concerning lifting of idempotents that appear in the literature. Most of the results are obtained by constructing explicit counter-examples. For instance, we provide a ring [Formula: see text] for which idempotents lift modulo the Jacobson radical [Formula: see text], but idempotents do not lift modulo [Formula: see text]. Thus, the property “idempotents lift modulo the Jacobson radical” is not a Morita invariant. We also prove that if [Formula: see text] and [Formula: see text] are ideals of [Formula: see text] for which idempotents lift (even strongly), then it can be the case that idempotents do not lift over [Formula: see text]. On the positive side, if [Formula: see text] and [Formula: see text] are enabling ideals in [Formula: see text], then [Formula: see text] is also an enabling ideal. We show that if [Formula: see text] is (weakly) enabling in [Formula: see text], then [Formula: see text] is not necessarily (weakly) enabling in [Formula: see text] while [Formula: see text] is (weakly) enabling in [Formula: see text]. The latter result is a special case of a more general theorem about completions. Finally, we give examples showing that conjugate idempotents are not necessarily related by a string of perspectivities.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extending Abelian Rings: A Generalized Approach;European Journal of Pure and Applied Mathematics;2024-04-30

2. On some generalizations of abelian rings;Journal of Algebra and Its Applications;2023-12-30

3. Some Results on Simple-Direct-Injective Modules;KYUNGPOOK MATH J;2023

4. Idempotent chains and bounded generation of SL2;Journal of Pure and Applied Algebra;2023-12

5. Rings with transitive chaining of idempotents;Contemporary Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3