Affiliation:
1. Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
Abstract
In this paper, we survey the main known constructions of Ferrers diagram rank-metric codes, and establish new results on a related conjecture by Etzion and Silberstein. We also give a sharp lower bound on the dimension of linear rank-metric anticodes with a given profile. Combining our results with the multilevel construction, we produce examples of subspace codes with the largest known cardinality for the given parameters. We also apply results from algebraic geometry to the study of the analogous problem over an algebraically closed field, proving that the bound by Etzion and Silberstein can be improved in this case, and providing a sharp bound for full-rank matrices.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献