Affiliation:
1. Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
3. Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Abstract
Let R be a commutative ring with unity. The cozero-divisor graph of R denoted by Γ′(R) is a graph with the vertex set W*(R), where W*(R) is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b are adjacent if and only if a ∉ Rb and b ∉ Ra. In this paper, we show that if Γ′(R) is a forest, then Γ′(R) is a union of isolated vertices or a star. Also, we prove that if Γ′(R) is a forest with at least one edge, then R ≅ ℤ2 ⊕ F, where F is a field. Among other results, it is shown that for every commutative ring R, diam (Γ′(R[x])) = 2. We prove that if R is a field, then Γ′(R[[x]]) is totally disconnected. Also, we prove that if (R, m) is a commutative local ring and m ≠ 0, then diam (Γ′(R[[x]])) ≤ 3. Finally, it is proved that if R is a commutative non-local ring, then diam (Γ′(R[[x]])) ≤ 3.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献