ON THE IDEMPOTENT GRAPH OF A RING

Author:

AKBARI S.12,HABIBI M.3,MAJIDINYA A.4,MANAVIYAT R.4

Affiliation:

1. Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, Iran

2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

3. Department of Mathematics, University of Tafresh, P. O. Box 39518-79611, Tafresh, Iran

4. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran

Abstract

The idempotent graph of a ring R, denoted by I(R), is a graph whose vertices are all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = yx = 0. In this paper we show if D is a division ring, then the clique number of I(Mn(D))(n ≥ 2) is n and for any commutative Artinian ring R the clique number and the chromatic number of I(R) are equal to the number of maximal ideals of R. We prove that for every left Noetherian ring R, the clique number of I(R) is finite. For every finite field F, we also determine an independent set of I(Mn(F)) with maximum size. If F is an infinite field, then we prove that the domination number of I(Mn(F)) is infinite. We show that the idempotent graph of every reduced ring is connected and if n ≥ 3 and D is a division ring, then I(Mn(D)) is connected and moreover diam(I(Mn(D))) ≤ 5.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clear graph of a ring;Indian Journal of Pure and Applied Mathematics;2024-04-04

2. Nil clean graphs associated with commutative rings;Journal of Algebra and Its Applications;2024-02-15

3. Subgraph of unitary Cayley graph of matrix algebras induced by idempotent matrices;Discrete Mathematics;2024-02

4. A study of upper ideal relation graphs of rings;AKCE International Journal of Graphs and Combinatorics;2023-08-25

5. Coidempotent graph of a ring;Journal of Algebra and Its Applications;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3