Affiliation:
1. Department of Mathematics, Ohio University, Athens, Ohio-45701, USA
Abstract
A classical result of Zelinsky states that every linear transformation on a vector space V, except when V is one-dimensional over ℤ2, is a sum of two invertible linear transformations. We extend this result to any right self-injective ring R by proving that every element of R is a sum of two units if no factor ring of R is isomorphic to ℤ2.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献