On ∗-clean group rings over abelian groups

Author:

Han Dongchun1,Ren Yuan2,Zhang Hanbin3

Affiliation:

1. Department of Mathematics, Southwest Jiaotong University, Chengdu 610000, P. R. China

2. Academy of Mathematics and Systems Science, Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing 100190, P. R. China

3. Center for Combinatorics, Nankai University, Tianjin 300071, P. R. China

Abstract

An associative ring with unity is called clean if each of its elements is the sum of an idempotent and a unit. A clean ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In a recent paper, Huang, Li and Yuan provided a complete characterization that when a group ring [Formula: see text] is ∗-clean, where [Formula: see text] is a finite field and [Formula: see text] is a cyclic group of an odd prime power order [Formula: see text]. They also provided a necessary condition and a few sufficient conditions for [Formula: see text] to be ∗-clean, where [Formula: see text] is a cyclic group of order [Formula: see text]. In this paper, we extend the above result of Huang, Li and Yuan from [Formula: see text] to [Formula: see text] and provide a characterization of ∗-clean group rings [Formula: see text], where [Formula: see text] is a finite abelian group and [Formula: see text] is a field with characteristic not dividing the exponent of [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On ⁎-clean group rings over finite fields;Finite Fields and Their Applications;2021-08

2. Clean group rings over localizations of rings of integers;Journal of Pure and Applied Algebra;2020-07

3. A reduction theorem for the existence of ⁎-clean finite group rings;Finite Fields and Their Applications;2020-06

4. Strongly 2-nil-clean rings with involutions;Czechoslovak Mathematical Journal;2018-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3