Affiliation:
1. CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Córdoba, Argentina
2. Department of Mathematics and Statistics, University of Regina, Canada
Abstract
Let 𝔤 be a finite-dimensional Lie algebra over a field of characteristic 0, with solvable radical 𝔯 and nilpotent radical 𝔫 = [𝔤, 𝔯]. Given a finite-dimensional 𝔤-module U, its nilpotency series 0 ⊂ U(1) ⊂ ⋯ ⊂ U(m) = U is defined so that U(1) is the 0-weight space of 𝔫 in U, U(2)/U(1) is the 0-weight space of 𝔫 in U/U(1), and so on. We say that U is linked if each factor of its nilpotency series is a uniserial 𝔤/𝔫-module, i.e. its 𝔤/𝔫-submodules form a chain. Every uniserial 𝔤-module is linked, every linked 𝔤-module is indecomposable with irreducible socle, and both converses fail. In this paper, we classify all linked 𝔤-modules when 𝔤 = 〈x〉 ⋉ 𝔞 and ad x acts diagonalizably on the abelian Lie algebra 𝔞. Moreover, we identify and classify all uniserial 𝔤-modules amongst them.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献