Affiliation:
1. Université catholique de Louvain, Chemin du Cyclotron, 2, 1348 Louvain-la-Neuve, Belgium
Abstract
The first section of this paper yields a sufficient condition for a Mal'cev–Neumann ring of formal series to be a noncrossed product division algebra. This result is used in Sec. 2 to give an elementary proof of the existence of noncrossed product division algebras (of degree 8 or degree p2 for p any odd prime). The arguments are based on those of Hanke in [A direct approach to noncrossed product division algebras, thesis dissertation, Postdam (2001), An explicit example of a noncrossed product division algebra, Math. Nachr.251 (2004) 51–68, A twisted Laurent series ring that is a noncrossed product, Israel. J. Math.150 (2005) 199–2003].
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献