THE TIME-DEPENDENT INTRINSIC CORRELATION BASED ON THE EMPIRICAL MODE DECOMPOSITION

Author:

CHEN XIANYAO1,WU ZHAOHUA2,HUANG NORDEN E.3

Affiliation:

1. First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, China

2. Department of Meteorology, Florida State University, Tallahassee, FL 32306-4520, USA

3. Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan

Abstract

A Time-Dependent Intrinsic Correlation (TDIC) method is introduced. This new approach includes both auto- and cross-correlation analysis designed especially to analyze, capture and track the local correlations between nonlinear and nonstationary time series pairs. The approach is based on Empirical Mode Decomposition (EMD) to decompose the nonlinear and nonstationary data into their intrinsic mode functions (IMFs) and uses the instantaneous periods of the IMFs to determine a set of the sliding window sizes for the computation of the running correlation coefficients for multi-scale data. This new method treats the selection of the sliding window sizes as an adaptive process determined by the data itself, not a "tuning" process. Therefore, it gives an intrinsic correlation analysis of the data. Furthermore, the multi-window approach makes the new method applicable to complicated data from multi-scale phenomena. The synthetic and time series from real world are used to demonstrate conclusively that the new approach is far more superior over the traditional method in its ability to reveal detailed and subtle correlations unavailable through any other methods in existence. Thus, the TDIC represents a major advance in statistical analysis of data from nonlinear and nonstationary processes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3