THE NONLINEAR AND NONSTATIONARY PROPERTIES IN EEG SIGNALS: PROBING THE COMPLEX FLUCTUATIONS BY HILBERT–HUANG TRANSFORM

Author:

LO MEN-TZUNG1,TSAI PING-HUANG234,LIN PEI-FENG56,LIN CHEN17,HSIN YUE LOONG8

Affiliation:

1. Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC

2. Neurology Department, National Yang-Ming University Hospital, Yi-Lan, Taiwan, ROC

3. Graduate Institute of Biomedical Electronics and Bioinformations, National Taiwan University, Taiwan, ROC

4. National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC

5. Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, ROC

6. Department of Health, Executive Yuan, Tainan Hospital, Tainan, Taiwan, ROC

7. Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan, ROC

8. Neurology, Buddhist Tzu Chi General Hospital, Hualein, Taiwan, ROC

Abstract

The analysis of biological fluctuations provides an excellent route to probe the underlying mechanisms in maintaining internal homeostasis of the body, especially under the challenges of the ever-changing environment or disease processes. However, the features of nonlinearity and nonstationarity in physiological time series limit the reliability of the conventional analysis. Hilbert–Huang transform (HHT), based on nonlinear theory, is an innovative approach to extract the dynamic information at different time scales, in particular, from nonstationary signals. In this paper, HHT is introduced to analyze the alpha waves of human's electroencephalography (EEG), which seemly oscillate regularly between 8 and 12 Hz in healthy subject but getting irregular or disappeared in different demented status. Furthermore, conventional time–frequency analyses are adopted to collate the results from those methods and HHT. Finally, the potential usages of HHT are demonstrated in characterizing the biological signals qualitatively and quantitatively, including stationarity analysis, instantaneous frequency and amplitude modulation or correlation analysis. Such applications on EEG have successively disclosed the differences of alpha rhythms between normal and demented brains and the nonlinear characteristics of the underlying mechanisms. Hopefully, in addition to empower the studies of EEG varied in diseased, aging, and physiological processes, these methods might find other applications in EEG analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3