AN ENERGY-CONSERVING DISCONTINUOUS MULTISCALE FINITE ELEMENT METHOD FOR THE WAVE EQUATION IN HETEROGENEOUS MEDIA

Author:

CHUNG ERIC T.1,EFENDIEV YALCHIN2,GIBSON RICHARD L.3

Affiliation:

1. Department of Mathematics, The Chinese University of Hong Kong, Hong Kong

2. Department of Mathematics, Texas A & M University, College Station, TX 77843, USA

3. Department of Geology & Geophysics, Texas A & M University, College Station, TX 77843, USA

Abstract

Seismic data are routinely used to infer in situ properties of earth materials on many scales, ranging from global studies to investigations of surficial geological formations. While inversion and imaging algorithms utilizing these data have improved steadily, there are remaining challenges that make detailed measurements of the properties of some geologic materials very difficult. For example, the determination of the concentration and orientation of fracture systems is prohibitively expensive to simulate on the fine grid and, thus, some type of coarse-grid simulations are needed. In this paper, we describe a new multiscale finite element algorithm for simulating seismic wave propagation in heterogeneous media. This method solves the wave equation on a coarse grid using multiscale basis functions and a global coupling mechanism to relate information between fine and coarse grids. Using a mixed formulation of the wave equation and staggered discontinuous basis functions, the proposed multiscale methods have the following properties. • The total wave energy is conserved. • Mass matrix is diagonal on a coarse grid and explicit energy-preserving time discretization does not require solving a linear system at each time step. • Multiscale basis functions can accurately capture the subgrid variations of the solution and the time stepping is performed on a coarse grid. We discuss various subgrid capturing mechanisms and present some preliminary numerical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3