Affiliation:
1. Department of Computer Science and Engineering, Anna University Regional Campus, Tirunelveli, India
Abstract
The scalability of the cloud infrastructure is essential to perform large-scale data processing using MapReduce programming model by automatically provisioning and de-provisioning the resources on demand. The existing MapReduce model shows performance degradation while getting adapted to heterogeneous environments since sufficient techniques are not available to scale the resources on demand and the scheduling algorithms would not cooperate as the resources are configured dynamically. An Auto-Scaling Framework (ASF) is presented in this article to configure the resources automatically based on the current system load in a heterogeneous Hadoop environment. The scheduling of data and task is done in a data-local manner that adapts while new resources are configured, or the existing resources are removed. A monitoring module is integrated with the JobTracker to observe the status of physical machines, compute the system load and provide automated provisioning of the resources. Then, Replica Tracker is utilized to track the replica objects for efficient scheduling of the task in the physical machines. The experiments are conducted in a commercial cloud environment using diverse workload characteristics, and the observations show that the proposed framework outperforms the existing scheduling mechanisms by the performance metrics such as average completion time, scheduling time, data locality, resource utilization and throughput.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献