An Auto-Scaling Framework for Heterogeneous Hadoop Systems

Author:

Bibal J. V. Benifa1,Dejey D.1

Affiliation:

1. Department of Computer Science and Engineering, Anna University Regional Campus, Tirunelveli, India

Abstract

The scalability of the cloud infrastructure is essential to perform large-scale data processing using MapReduce programming model by automatically provisioning and de-provisioning the resources on demand. The existing MapReduce model shows performance degradation while getting adapted to heterogeneous environments since sufficient techniques are not available to scale the resources on demand and the scheduling algorithms would not cooperate as the resources are configured dynamically. An Auto-Scaling Framework (ASF) is presented in this article to configure the resources automatically based on the current system load in a heterogeneous Hadoop environment. The scheduling of data and task is done in a data-local manner that adapts while new resources are configured, or the existing resources are removed. A monitoring module is integrated with the JobTracker to observe the status of physical machines, compute the system load and provide automated provisioning of the resources. Then, Replica Tracker is utilized to track the replica objects for efficient scheduling of the task in the physical machines. The experiments are conducted in a commercial cloud environment using diverse workload characteristics, and the observations show that the proposed framework outperforms the existing scheduling mechanisms by the performance metrics such as average completion time, scheduling time, data locality, resource utilization and throughput.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3