THE MINADEPT CLUSTERING APPROACH FOR DISCOVERING REFERENCE PROCESS MODELS OUT OF PROCESS VARIANTS

Author:

LI CHEN1,REICHERT MANFRED2,WOMBACHER ANDREAS3

Affiliation:

1. Information Systems Group, University of Twente, The Netherlands

2. Institute of Databases and Information Systems, University of Ulm, Germany

3. Database Group, University of Twente, The Netherlands

Abstract

During the last years a new generation of adaptive Process-Aware Information Systems (PAIS) has emerged, which enables dynamic process changes at runtime, while preserving PAIS robustness and consistency. Such adaptive PAIS allow authorized users to add new process activities, to delete existing activities, or to change pre-defined activity sequences during runtime. Both this runtime flexibility and process configurations at build-time, lead to a large number of process variants being derived from the same process model, but slightly differing in structure due to the applied changes. Generally, process variants are expensive to configure and difficult to maintain. This paper presents selected results from our MinAdept project. In particular, we provide a clustering algorithm that fosters learning from past process changes by mining a collection of process variants. As mining result we obtain a process model for which average distance to the process variant models becomes minimal. By adopting this process model as reference model in the PAIS, need for future process configuration and adaptation decreases. We have validated our clustering algorithm by means of a case study as well as comprehensive simulations. Altogether, our vision is to enable full process lifecycle support in adaptive PAIS.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3