Animal Models for Tendon Repair Experiments: A Comparison of Pig, Sheep and Human Deep Flexor Tendons in Zone II

Author:

Peltz Tim Sebastian123,Hoffman Stuart William1,Scougall Peter James13,Gianoutsos Mark Peter12,Savage Robert4,Oliver Rema Antoinette1,Walsh William Robert1

Affiliation:

1. Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia

2. Prince of Wales Hospital, Department of Plastic Reconstructive and Hand Surgery, Sydney, Australia

3. Sydney and St Lukes Hospital Complex, Department of Hand Surgery, Sydney, Australia

4. Royal Gwent Hospital, Department of Orthopaedic Surgery, Newport, Wales, UK

Abstract

Background: This laboratory study compared pig, sheep and human deep flexor tendons in regards to their biomechanical comparability. Methods: To investigate the relevant biomechanical properties for tendon repair experiments, the tendons resistance to cheese-wiring (suture drag/splitting) was assessed. Cheese-wiring of a suture through a tendon is an essential factor for repair gapping and failure in a tendon repair. Results: Biomechanical testing showed that forces required to pulling a uniform suture loop through sheep or pig tendons in Zone II were higher than in human tendons. At time point zero of testing these differences did not reach statistical significance, but differences became more pronounced when forces were measured beyond initial cheese-wiring (2 mm, 5 mm and 10 mm). The stronger resistance to cheese-wiring was more pronounced in the pig tendons. Also regarding size and histology, sheep tendons were more comparable to human tendons than pig tendons. Conclusions: Differences in tendon bio-properties should be kept in mind when comparing and interpreting the results of laboratory tendon experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3