The Jordan–Moore–Gibson–Thompson Equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time

Author:

Kaltenbacher Barbara1,Nikolić Vanja2

Affiliation:

1. Alpen-Adria-Universität Klagenfurt, Institut für Mathematik, Universitätsstraße 6567, 9020 Klagenfurt, Austria

2. Technical University of Munich, Department of Mathematics, Boltzmannstraße 3, 85748 Garching, Germany

Abstract

In this paper, we consider the Jordan–Moore–Gibson–Thompson equation, a third-order in time wave equation describing the nonlinear propagation of sound that avoids the infinite signal speed paradox of classical second-order in time strongly damped models of nonlinear acoustics, such as the Westervelt and the Kuznetsov equation. We show well-posedness in an acoustic velocity potential formulation with and without gradient nonlinearity, corresponding to the Kuznetsov and the Westervelt nonlinearities, respectively. Moreover, we consider the limit as the parameter of the third-order time derivative that plays the role of a relaxation time tends to zero, which again leads to the classical Kuznetsov and Westervelt models. To this end, we establish appropriate energy estimates for the linearized equations and employ fixed-point arguments for well-posedness of the nonlinear equations. The theoretical results are illustrated by numerical experiments.

Funder

the Deutsche Forschungsgemeinschaft

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3