NEW RESULTS ON THE ASYMPTOTIC BEHAVIOR OF DIRICHLET PROBLEMS IN PERFORATED DOMAINSDIRICHLET PROBLEMS IN PERFORATED DOMAINS

Author:

MASO GIANNI DAL1,GARRONI ADRIANA1

Affiliation:

1. S.I.S.S.A., via Beirut 4, 34014 Trieste, Italy

Abstract

Let A be a linear elliptic operator of the second order with bounded measurable coefficients on a bounded open set Ω of Rn and let (Ωh) be an arbitrary sequence of open subsets of Ω. We prove the following compactness result: there exist a subsequence, still denoted by (Ωh), and a positive Borel measure μ on Ω, not charging polar sets, such that, for every f∈H−1(Ω) the solutions [Formula: see text] of the equations Auh=f in Ωh, extended to 0 on Ω\Ωh, converge weakly in [Formula: see text] to the unique solution [Formula: see text] of the problem [Formula: see text] When A is symmetric, this compactness result is already known and was obtained by Γ-convergence techniques. Our new proof, based on the method of oscillating test functions, extends the result to the non-symmetric case. The new technique, which is completely independent of Γ-convergence, relies on the study of the behavior of the solutions [Formula: see text] of the equations [Formula: see text] where A* is the adjoint operator. We prove also that the limit measure μ does not change if A is replaced by A*. Moreover, we prove that µ depends only on the symmetric part of the operator A, if the coefficients of the skew-symmetric part are continuous, while an explicit example shows that μ may depend also on the skew-symmetric part of A, when the coefficients are discontinuous.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control problems in the coefficients and the domain for linear elliptic equations;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-09-14

2. Homogenization and uniform stabilization of the wave equation in perforated domains;Journal of Differential Equations;2024-09

3. Convergence Rates and Fluctuations for the Stokes–Brinkman Equations as Homogenization Limit in Perforated Domains;Archive for Rational Mechanics and Analysis;2024-05-22

4. On the Existence of Optimal Potentials on Unbounded Domains;SIAM Journal on Mathematical Analysis;2021-01

5. Measure valued solutions for an optimal harvesting problem;Journal de Mathématiques Pures et Appliquées;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3