Affiliation:
1. S.I.S.S.A., via Beirut 4, 34014 Trieste, Italy
Abstract
Let A be a linear elliptic operator of the second order with bounded measurable coefficients on a bounded open set Ω of Rn and let (Ωh) be an arbitrary sequence of open subsets of Ω. We prove the following compactness result: there exist a subsequence, still denoted by (Ωh), and a positive Borel measure μ on Ω, not charging polar sets, such that, for every f∈H−1(Ω) the solutions [Formula: see text] of the equations Auh=f in Ωh, extended to 0 on Ω\Ωh, converge weakly in [Formula: see text] to the unique solution [Formula: see text] of the problem [Formula: see text] When A is symmetric, this compactness result is already known and was obtained by Γ-convergence techniques. Our new proof, based on the method of oscillating test functions, extends the result to the non-symmetric case. The new technique, which is completely independent of Γ-convergence, relies on the study of the behavior of the solutions [Formula: see text] of the equations [Formula: see text] where A* is the adjoint operator. We prove also that the limit measure μ does not change if A is replaced by A*. Moreover, we prove that µ depends only on the symmetric part of the operator A, if the coefficients of the skew-symmetric part are continuous, while an explicit example shows that μ may depend also on the skew-symmetric part of A, when the coefficients are discontinuous.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献