A HYBRID MODEL FOR TUMOR SPHEROID GROWTH IN VITRO I: THEORETICAL DEVELOPMENT AND EARLY RESULTS

Author:

KIM YANGJIN1,STOLARSKA MAGDALENA A.1,OTHMER HANS G.2

Affiliation:

1. School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

2. School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

Tumor spheroids grown in vitro have been widely used as models of in vivo tumor growth because they display many of the characteristics of in vivo growth, including the effects of nutrient limitations and perhaps the effect of stress on growth. In either case there are numerous biochemical and biophysical processes involved whose interactions can only be understood via a detailed mathematical model. Previous models have focused on either a continuum description or a cell-based description, but both have limitations. In this paper we propose a new mathematical model of tumor spheroid growth that incorporates both continuum and cell-level descriptions, and thereby retains the advantages of each while circumventing some of their disadvantages. In this model the cell-based description is used in the region where the majority of growth and cell division occurs, at the periphery of a tumor, while a continuum description is used for the quiescent and necrotic zones of the tumor and for the extracellular matrix. Reaction-diffusion equations describe the transport and consumption of two important nutrients, oxygen and glucose, throughout the entire domain. The cell-based component of this hybrid model allows us to examine the effects of cell–cell adhesion and variable growth rates at the cellular level rather than at the continuum level. We show that the model can predict a number of cellular behaviors that have been observed experimentally.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3