Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system

Author:

Dellacherie S.123,Jung J.345,Omnes P.16,Raviart P.-A.3

Affiliation:

1. Commissariat à l’Énergie Atomique et aux Énergies Alternatives, CEA, DEN, DM2S, STMF, F-91191 Gif-sur-Yvette, France

2. Département de Génie Mécanique, École Polytechnique de Montréal, C. P. 6079, Succ. Centre-ville, Montréal H3C 3A7 (Québec), Canada

3. Université Pierre et Marie Curie (Paris 6), LRC-Manon, Laboratoire J. L. Lions, 4 Place Jussieu, 75005 Paris, France

4. Université de Pau et des Pays de l’Adour, LMA-IPRA, UMR CNRS 5142, Avenue de l’Université, 64013 Pau, France

5. INRIA Bordeaux Sud Ouest, Cagire Team, 351 Cours de la Libération, 33405 Talence, France

6. Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), 99 Avenue J.-B. Clément F-93430, Villetaneuse Cedex, France

Abstract

This paper is composed of three self-consistent sections that can be read independently of each other. In Sec. 1, we define and analyze the low Mach number problem through a linear analysis of a perturbed linear wave equation. Then, we show how to modify Godunov-type schemes applied to the linear wave equation to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose a linear all Mach Godunov scheme for the linear wave equation. In Sec. 2, we apply the all Mach correction proposed in Sec. 1 to the case of the nonlinear barotropic Euler system when the Godunov-type scheme is a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in this nonlinear case by showing how this construction is related with the linear analysis of Sec. 1. At last, we apply in Sec. 3 the all Mach correction proposed in Sec. 1 in the case of the full Euler compressible system. Numerous numerical results proposed in Secs. 1–3 justify the theoretical results and show that the obtained all Mach Godunov-type schemes are both accurate and stable for all Mach numbers. We also underline that the proposed approach can be applied to other schemes and allows to justify other existing all Mach schemes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3