Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures

Author:

Amaziane Brahim1,Pankratov Leonid12,Piatnitski Andrey34

Affiliation:

1. Laboratoire de Mathématiques et de leurs Applications, CNRS-UMR 5142, Université de Pau, Av. de l'Université, 64000 Pau, France

2. Department of Mathematics, B.Verkin Institut for Low Temperature Physics and Engineering, 47, Av. Lenin, 61103 Kharkov, Ukraine

3. Narvik University College, Postbox 385, Narvik, 8505, Norway

4. Lebedev Physical Institute RAS, leninski prospect 53, Moscow 119991, Russia

Abstract

This paper presents a study of immiscible compressible two-phase, such as water and gas, flow through highly heterogeneous porous media with periodic microstructure. Such models appear in gas migration through engineered and geological barriers for a deep repository for radioactive waste. We will consider a domain made up of several zones with different characteristics: porosity, absolute permeability, relative permeabilities and capillary pressure curves. Consequently, the model involves highly oscillatory characteristics and internal nonlinear interface conditions. The microscopic model is written in terms of the phase formulation, i.e. where the wetting (water) saturation phase and the non-wetting (gas) pressure phase are primary unknowns. This formulation leads to a coupled system consisting of a nonlinear parabolic equation for the gas pressure and a nonlinear degenerate parabolic diffusion-convection equation for the water saturation, subject to appropriate transmission, boundary and initial conditions. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Moreover, the transmission conditions are nonlinear and the saturation is discontinuous at interfaces separating different media. Under some realistic assumptions on the data, we obtain a nonlinear homogenized coupled system with effective coefficients which are computed via a cell problem and give a rigorous mathematical derivation of the upscaled model by means of the two-scale convergence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3