EXISTENCE AND UNIQUENESS OF STEADY, FULLY DEVELOPED FLOWS OF SECOND ORDER FLUIDS IN CURVED PIPES

Author:

COSCIA V.1,ROBERTSON A. M.2

Affiliation:

1. Department of Mathematics, University of Ferrara, Italy

2. Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Abstract

Steady, fully developed flows of second order fluids in curved pipes of circular cross-section have previously been studied using regular perturbation methods.2,3,12,20 These perturbation solutions are applicable for pipes with small curvature ratio: The cross sectional radius of the pipe divided by the radius of curvature of the pipe centerline. It was shown by Jitchote and Robertson12 that perturbation equations could be ill-posed when the second normal stress coefficient is nonzero. Motivated by the singular nature of the perturbation equations, here, we study the full governing equations without introducing assumptions inherent in perturbation methods. In particular, we examine the existence and uniqueness of solutions to the full governing equations for second order fluids. We show rigorously that a solution to the full problem exists and is locally unique for small non-dimensional pressure drop, in agreement with earlier results obtained using a formal expansion in the curvature ratio.12 The results obtained here are valid for arbitrarily shaped cross-section (sufficiently smooth) and for all curvature ratios. An operator splitting method has been employed which may be useful for numerical studies of steady and unsteady flows of second order fluids in curved pipes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Generalized Newtonian Fluids in Curved Pipes;SIAM Journal on Mathematical Analysis;2016-01

2. On flow of a Navier–Stokes fluid in curved pipes. Part I: Steady flow;Applied Mathematics Letters;2005-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3