Affiliation:
1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
Abstract
We consider the reconstruction of singular surfaces from the over-determined boundary conditions of an elliptic problem. The problem arises in optical and impedance tomography, where void-like structure or cracks may be modeled as diffusion processes supported on co-dimension one surfaces. The reconstruction of such surfaces is obtained theoretically and numerically by combining a shape sensitivity analysis with a level set method. The shape sensitivity analysis is used to define a velocity field, which allows us to update the surface while decreasing a given cost function, which quantifies the error between the prediction of the forward model and the measured data. The velocity field depends on the geometry of the surface and the tangential diffusion process supported on it. The latter process is assumed to be known in this paper. The level set method is next applied to evolve the surface in the direction of the velocity field. Numerical simulations show how the surface may be reconstructed from noisy estimates of the full, or local, Neumann-to-Dirichlet map.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献